Lời giải
+ \( x \in \left[\frac{\pi}{6}, \frac{\pi}{3}\right]: \quad \frac{1}{\cos^2 x} = \frac{1}{\sin^2 x} \iff \sin x = \cos x \iff x = \frac{\pi}{4}\)
\(S = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \left| \frac{1}{\cos^2 x} - \frac{1}{\sin^2 x} \right| dx = \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \left| \frac{1}{\cos^2 x} - \frac{1}{\sin^2 x} \right| dx + \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \left| \frac{1}{\cos^2 x} - \frac{1}{\sin^2 x} \right| dx\)
\(= \left| \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \left( \frac{1}{\cos^2 x} - \frac{1}{\sin^2 x} \right) dx \right| + \left| \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \left( \frac{1}{\cos^2 x} - \frac{1}{\sin^2 x} \right) dx \right| \)
\(= \Bigg| \left( \tan(x) + \cot(x) \right) \Big|_{\frac{\pi}{6}}^{\frac{\pi}{4}} \Big| + \Big| \left( \tan(x) + \cot(x) \right) \Big|_{\frac{\pi}{4}}^{\frac{\pi}{3}} \Bigg| \)
\(= \left| 2 - \left(\frac{\sqrt{3}}{3} + \sqrt{3}\right) \right|
+ \left| \left(\sqrt{3} + \frac{\sqrt{3}}{3}\right) - 2 \right|\)
\(= 2 .\left( \frac{4\sqrt{3}}{3} - 2 \right) \) (đvdt)
* Bấm: \( \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \left| \frac{1}{\cos^2 x} - \frac{1}{\sin^2 x} \right| dx = \text{(dùng máy tính, 35 giây)} \quad 0.618802\)
\(= \frac{8\sqrt{3}}{3} - 4 \approx 0.618802\)
page 09
Lời giải
\(\Rightarrow\) Vậy chọn đáp án \(\boxed{\text{C}} \)
page 10
( Đề thi TNPT 2023, câu 37 Mã 101)
Lời giải
\(\int_{-2}^{3} f(x) \, dx = \int_{-2}^{1} f(x) \, dx + \int_{1}^{2} f(x) \, dx + \int_{2}^{3} f(x) \, dx\)
\( = 3 + \frac{1}{2} - \frac{1}{2} = 3\)
\(\Rightarrow\) Vậy chọn đáp án \(\boxed{\text{D}} \)
page 11
* Một số hình phẳng cần chú ý !
\(S = S_1 + S_2\)
\( = \int_{a}^{c} \left( f(x) - g(x) \right) dx + \int_{c}^{b} \left( f(x) - h(x) \right) dx\)
\(S = S_1 + S_2 + S_3\)
page 12
Lời giải
• \( f'(x) = 2x - 2\)
\( \triangle: y = f'(3)(x - 3) + 5\)
\( \triangle: y = 4x - 7\)
\( S = \int_{0}^{3} \left[ (x^2 - 2x + 2) - (4x - 7) \right] dx\)
\( = \int_{0}^{3} \left( x^2 - 6x + 9 \right) dx \)
\( = ( \frac{x^3}{3} - 3x^2 + 9x ) \bigg|_{0}^{3} = 9\)
\(\Rightarrow\) Vậy chọn đáp án \(\boxed{\text{C}} \)
page 13