\( F(x) = \int x\sqrt{1+x^2} \, dx = \frac{1}{2} \int (2x(1+x^2)^{\frac{1}{2}}) \, dx \)
\( = \frac{1}{2} \frac{(1+x^2)^{\frac{3}{2}}}{\frac{3}{2}} + C = \frac{1}{3} (1+x^2)\sqrt{1+x^2} + C \)
\( F(\sqrt{3}) = \frac{8}{3} + C = 2 \implies C = -\frac{2}{3} \implies \boxed{A}\)
Thêm:
\( \int \cos x \sqrt{1+2\sin x} \, dx \)
\( \int x^3 (1+x^4)^5 \, dx \)
page10
a) \(\int \frac{1}{3x-2} \, dx\)
*\( \int \frac{1}{ax+b} \, dx = \frac{1}{a} \ln |ax+b| + C \)
b) \(\int \frac{4x-3}{x-2} \, dx\)
c) \(\int \frac{x+2}{2x-1} \, dx = \int \frac{\frac{1}{2}(2x-1)+\frac{5}{2}}{2x-1} \, dx\)
d) \(\int \frac{x^2 - 3x + 4}{x-1} \, dx\)
\( f(x) = \int \frac{x}{x^2+1} \, dx = \frac{1}{2} \int \frac{2x}{x^2+1} \, dx = \frac{1}{2} \ln |x^2+1| + C \)
\( f(1) = \frac{1}{2} \ln 2 + C = \ln 2 \implies C = \frac{1}{2} \ln 2 \)
\( f(x) = \frac{1}{2} \ln |x^2+1| + \frac{1}{2} \ln 2 \implies f(3) = \frac{1}{2} \ln 10 + \frac{1}{2} \ln 2 = \frac{1}{2} \ln 20 \implies \boxed{B}\)
page11
\(\int \frac{1}{\sin 2x} \, dx\)
\(\int \frac{1}{\sin x} \, dx = \frac{1}{2} \int \frac{\frac{1}{\cos^2 \frac{x}{2}}}{ \tan \frac{x}{2}} \, dx = \ln |\tan \frac{x}{2}| + C\)
page12
a) \(\int e^{3x+1} \, dx\)
b) \(\int \cos x \, e^{\sin{x}} \, dx\)
c) \(\int \frac{e^x}{1+e^x} \, dx\)
d) \(\int \frac{1}{1+e^x} \, dx\) (thêm bớt)
page13
Ví dụ:
\(\int (x^3 + 3^x) \, dx\)
* \(\int u' \cos u \, dx = \int \cos u \, du = \sin u + C\)
\(\int \cos ax \, dx = \frac{1}{a} \sin ax + C\)
* \(\int u' \sin u \, dx = \int \sin u \, du = -\cos u + C\)
\(\int \sin ax \, dx = -\frac{1}{a} \cos ax + C\)
page14