Bài tập:
+ \(mpP \perp mpQ \Rightarrow \overrightarrow{n_Q} = (2, -1, 3) \parallel mpP\), \( \quad \overrightarrow{AB} = (-1, -2, 5) \subset mpP \).
\(\Rightarrow \overrightarrow{n_P} = [\overrightarrow{n_Q}, \overrightarrow{AB}] = (1, -13, -5)\).
+ Mặt phẳng \(P\) qua \(A(3, 1, -1)\), \(\overrightarrow{n_P} = (1, -13, -5)\):
\(\Rightarrow mpP: x - 13y - 5z + 5 = 0\Rightarrow \boxed{A}\).
page18
(Đề thi TNPT 2024 câu 36 Mã 102)
page19
Bài tập:
+ Mặt phẳng \((ADH)\) vuông góc với mặt phẳng \((ABC)\).
Phương trình mặt phẳng \((ABC)\): \( \frac{x}{2} + \frac{y}{3} + \frac{z}{3} = 1\Leftrightarrow 3x + 2y + 2z - 6 = 0. \)
+ \( \vec{n}_{(ABC)} = (3, 2, 2) \parallel mp(ADH) \)
+ \(\overrightarrow{AD} = (-1, -1, 2) \subset (ADH)\).
\(\Rightarrow \vec{n}_{(ADH)} = [\vec{n}_{(ABC)}, \overrightarrow{AD}] = (6, -8, -1). \)
\(\Rightarrow\) Phương trình mặt phẳng \((ADH)\): \( 6x - 8y - z - 12 = 0 \Rightarrow \boxed{D}\)
Cách 2: Hay hơn!
- \(\overrightarrow{HD} \perp \text{mp}(ABC)\) : \(3x + 2y + 2z - 6 = 0\).
\(\Rightarrow \overrightarrow{HD} \parallel \vec{n}_{(ABC)} = (3, 2, 2). \)
\( \Rightarrow \vec{n}_{(ADH)} = [\vec{n}_{(ABC)}, \overrightarrow{AD}] = (6, -8, -1). \)
page20
Bài tập:
mp(R) \(\perp\) mp(P): \( \vec{n}_P = (1, -1, 1) \parallel \text{mp}(R). \)
mp(R) \(\perp\) mp(Q): \( \vec{n}_Q = (3, 2, -12) \parallel \text{mp}(R). \)
\( \vec{n}_R = [\vec{n}_P, \vec{n}_Q] = (10, 15, 5) \parallel (2, 3, 1). \)
\( \Rightarrow\) Phương trình mp(R): \( 2x + 3y + z = 0 \Rightarrow \boxed{C}\)
page21
Bài tập:
\(N(a, b, c)\)
\( \begin{cases} \overrightarrow{MN} = (a - 1, b + 1, c - 1) \parallel \vec{n}_P = (1, -2, -3) \\ I \left(\frac{a + 1}{2}, \frac{b - 1}{2}, \frac{c + 1}{2}\right) \in \text{mp}P: x - 2y - 3z + 14 = 0 \end{cases}\)
\(\Leftrightarrow \begin{cases} \frac{a-1}{1}= \frac{b+1}{-2} = \frac{c-1}{-3} \\ \frac{a + 1}{2} - 2\left(\frac{b - 1}{2}\right) - 3\left(\frac{c + 1}{2}\right) + 14 = 0 \end{cases}\)
\(\Leftrightarrow \begin{cases}
-2a - b = -1, \\
-3a - c = -4, \\
\frac{a}{2} - b - \frac{3c}{2} = -14.
\end{cases} \Leftrightarrow \begin{cases} a = -1\\ b = 3 \\ c = 7 \end{cases}\)
\(\Leftrightarrow N(-1, 3, 7) \Rightarrow \boxed{D}\).
Cách 2: Thử
page22