Lời giải
Đặt \( t = -x \)
\( I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{\sin^6 x + \cos^6 x}{6^x + 1} \, dx = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{6^t(\sin^6 t + \cos^6 t)}{6^t + 1} \, dt \)
\(\Rightarrow 2I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} (\sin^6 t + \cos^6 t) \, dt \quad \Rightarrow I = \frac{5\pi}{32}\)
page 87
Lời giải
\( \begin{cases}
u = \ln(x + \sqrt{x^2 + 1}) \\
dv = dx
\end{cases}
\Rightarrow
\begin{cases}
du = \frac{1}{\sqrt{x^2 + 1}} \, dx \\
v = x
\end{cases}\)
\( I = x \ln(x + \sqrt{x^2 + 1}) \Bigg|_0^1 - \int_0^1 \frac{2x}{2\sqrt{x^2 + 1}} \, dx \)
\( = x \ln(x + \sqrt{x^2 + 1}) \Big|_0^1 - \sqrt{x^2 + 1} \Big|_0^1 \)
\( = \ln(1 + \sqrt{2}) - (\sqrt{2} - 1) \)
\( = 1 + \ln(1 + \sqrt{2}) - \sqrt{2} \)
page 88
Lời giải
Đặt \( \begin{cases}
u = \cos(\ln x) \\
dv = dx
\end{cases}
\Rightarrow
\begin{cases}
du = -\frac{1}{x} \sin(\ln x) \, dx \\
v = x
\end{cases}\)
\( I = x \cos(\ln x) \Bigg|_1^{e^{\pi}} + \int_1^{e^{\pi}} \sin(\ln x) \, dx \)
Đặt \(
\begin{cases}
u = \sin(\ln x) \\
dv = dx
\end{cases}
\Rightarrow
\begin{cases}
du = \frac{1}{x} \cos(\ln x) \, dx \\
v = x
\end{cases}\)
\( I = x \cos(\ln x) \Bigg|_1^{e^{\pi}} + x \sin(\ln x) \Bigg|_1^{e^{\pi}} - \int_1^{e^{\pi}} \cos(\ln x) \, dx \)
\( \Rightarrow I = \frac{1}{2}(x (\cos(\ln x) + \sin(\ln x)) \Bigg|_1^{e^{\pi}} \)
\( = -\frac{1}{2}(1 + e^{\pi}) \)
page 89
Lời giải
\( I = \int_1^e \frac{e^x}{x} \, dx + \int_1^e e^x \ln x \, dx \)
Xét \( \int_1^e \frac{e^x}{x} \, dx \)
Đặt \(
\begin{cases}
u = e^x \\
dv = \frac{1}{x} \, dx
\end{cases}
\Rightarrow
\begin{cases}
du = e^x \, dx \\
v = \ln x
\end{cases}\)
\( \int_1^e \frac{e^x}{x} \, dx = e^x \ln x \Bigg|_1^e - \int_1^e e^x \ln x \, dx \)
\( \Rightarrow I = \int_1^e \frac{e^x}{x} \, dx + \int_1^e e^x \ln x \, dx = e^x \ln x \Bigg|_1^e = e^e\)
page 90
Lời giải
\( I = \int_0^1 \frac{(x+1) - 1}{(x+1)^2} e^x \, dx = \int_0^1 \frac{1}{x+1} e^x \, dx - \int_0^1 \frac{1}{(x+1)^2} e^x \, dx \)
Xét \( I_1 = \int_0^1 \frac{1}{x+1} e^x \, dx \):
Đặt \(
\begin{cases}
u = \frac{1}{x+1} \\
dv = e^x \, dx
\end{cases}
\Rightarrow
\begin{cases}
du = -\frac{1}{(x+1)^2} \, dx \\
v = e^x
\end{cases}\)
\( I_1 = \int_0^1 \frac{1}{x+1} e^x \, dx = \frac{e^x}{x+1} \bigg|_0^1 + \int_0^1 \frac{1}{(x+1)^2} e^x \, dx \)
\( \Rightarrow I = \frac{e^x}{x+1} \Bigg|_0^1 = \frac{e}{2} - 1 \)
Làm thêm
a) \( \int_1^e \frac{(1 + x \ln x)}{x} e^x \, dx (R) \)
b) \( \int_0^{\frac{\pi}{2}} \frac{(1 + \sin x)}{(1 + \cos x)} e^x \, dx \)
page 91