Lời giải:
\( I = \int_1^e \frac{\ln x - 1}{x^2 \left[ \left( \frac{\ln x}{x} \right)^2 - 1 \right]} \, dx \)
Đặt \( t = \frac{\ln x}{x} \quad \Rightarrow \quad dt = \frac{(1 - \ln x)}{x^2} \, dx \)
\(\begin{cases}
x = 1 \Rightarrow t = 0 \\
x = e \Rightarrow t = \frac{1}{e}
\end{cases}\)
\( I = - \int_0^{\frac{1}{2}} \frac{1}{t^2 - 1} \, dt \)
page 92
Chú ý ! \( I = \int_0^{\frac{\pi}{2}} \frac{1}{3 \sin^2 x + \cos^2 x} \, dx \)
Không thế đặt: \( t = \tan x \), hoặc \( t = \cot x \)
\( I = \int_0^{\frac{\pi}{4}} \frac{1}{3\sin^2 x + \cos^2 x } \, dx + \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{1}{3\sin^2 x + \cos^2 x } \, dx \)
Đặt \( t = \tan x \):
\( \Rightarrow I_1 = \int_0^{\frac{\pi}{4}} \frac{1}{\cos^2 x \left[ 3 \tan^2 x + 1 \right]} \, dx \)
Đặt \( t = \cot x \):
\(\Rightarrow I_2 = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{1}{\sin^2 x \left[ 3 + \cot^2 x \right]} \, dx \)
\( \Leftrightarrow I_1 + I2 = \frac{\pi \sqrt{3}}{6} \)
page 93
Lời giải
\( I = \int_0^\pi \sqrt{(\cos x + \sin x)^2} \, dx = \int_0^\pi |\cos x + \sin x| \, dx \)
Gợi ý: \( \cos x + \sin x = 0 \Leftrightarrow \tan x = -1 \Leftrightarrow x = \frac{3\pi}{4} \) (trong \( (0, \pi) \))
\( I = \int_0^{\frac{3\pi}{4}} (\cos x + \sin x) \, dx - \int_{\frac{3\pi}{4}}^\pi (\cos x + \sin x) \, dx \)
\( = (\sin x - \cos x ) \bigg|_0^{\frac{3\pi}{4}} - ( \sin x - \cos x ) \bigg|_{\frac{3\pi}{4}}^\pi \)
\( = (\sqrt{2} + 1) - (1-\sqrt{2}) = 2\sqrt{2} \)
Bấm máy tính: (Chuyển máy tính về chế độ radian Shift → Mode → 4)
• \( \int_0^\pi \sqrt{1 + \sin 2x} \, dx = 2,828427 \)
• \( 2 \sqrt{2} = 2.2^\frac{1}{2} = 2.828427 \)
page 94
Lời giải
* \( 2^x - 2^{-x} > 0 \iff 2^x > 2^{-x} \iff x >-x \iff x > 0 \)
\( \int_{-1}^1 |2^x - 2^{-x}| \, dx = \int_{-1}^0 |2^x - 2^{-x}| \, dx + \int_0^1 |2^x - 2^{-x}| \, dx \)
\( = \int_{-1}^0 (2^{-x} - 2^x) \, dx + \int_0^1 (2^x - 2^{-x}) \, dx \)
\( = \left( -\frac{2^{-x}}{\ln 2} - \frac{2^x}{\ln 2} \right) \bigg|_{-1}^0 + \left( \frac{2^x}{\ln 2} + \frac{2^{-x}}{\ln 2} \right) \bigg|_0^1 \)
\( = \left( -\frac{2}{\ln 2} + \frac{2}{\ln 2} + \frac{1}{2\ln 2} \right) + \left( \frac{2}{\ln2} + \frac{1}{2\ln 2} \ -\frac{2}{\ln 2} \right) \)
\( = \frac{1}{\ln 2}\) (Bấm máy= 1.442695)
* Bấm: \( \int_{-1}^1 \sqrt{(2^x - 2^{-x})^2} \, dx = 1.442695 \)
page 95
Lời giải
\( I = \int_0^3 \sqrt{x(x^2 - 2x + 1)} \, dx = \int_0^3 \sqrt{x(x - 1)^2} \, dx \)
\(= \int_0^3 |x - 1| \sqrt{x}\, dx\)
\(= \int_0^1 (1 - x) \sqrt{x} \, dx + \int_1^3 (x - 1) \sqrt{x} \, dx\)
\(= \int_0^1 (x^{\frac{1}{2}} - x^{\frac{3}{2}}) \, dx + \int_1^3 (x^{\frac{3}{2}} - x^{\frac{1}{2}}) \, dx\)
\(= \left( \frac{2}{3} x \sqrt{x}- \frac{2}{5} x^2 \sqrt{x}\right)\bigg|_0^1 + \left( \frac{2}{5} x^2 \sqrt{x} - \frac{2}{3} x \sqrt{x} \right)\bigg|_1^3\)
\(= \frac{8 + 24\sqrt{3}}{15}\)
* Bấm
• \( \int_0^3 \sqrt{x^3 - 2x^2 + x} \, dx = 3.304614\)
• \( \frac{8 + 24.3^{\frac{1}{2}}}{15} = 3.304614 \)
\(\Rightarrow\) Vậy chọn đáp án \(\boxed{\text{B}} \)
page 96