(2011. A)
Lời giải
\( I = \int_0^{\frac{\pi}{4}} \frac{x \sin x + \cos x}{x \sin x + \cos x} \, dx + \int_0^{\frac{\pi}{4}} \frac{x \cos x}{x \sin x + \cos x} \, dx \)
(Vì \( (x \sin x + \cos x)' = x \cos x \))
\( = x \Bigg|_0^{\frac{\pi}{4}} + \ln |x \sin x + \cos x| \Bigg|_0^{\frac{\pi}{4}} \)
\( = \frac{\pi}{4} + \ln \left( \frac{\sqrt{2}}{2} (1 + \frac{\pi}{4}) \right)\)
page 97
Lời giải
Đặt \( t = \pi - x \quad \Rightarrow \quad dt = -dx\)
\(\begin{cases}
x = 0 \Rightarrow t = \pi \\
x = \pi \Rightarrow t = 0
\end{cases}\)
\(I = \int_\pi^0 \frac{(\pi - t) \sin (\pi - t)}{1 + \cos^2 (\pi - t)} (-dt)\)
\(= \pi \int_0^\pi \frac{ \sin t}{1 + \cos^2 t} dt - \int_0^\pi \frac{t \sin t}{1 + \cos^2 t} dt\)
\(\Rightarrow I = \frac{\pi}{2} \int_0^\pi \frac{\sin t}{1 + \cos^2 t} dt \quad\) Đặt \(u = \cos t\)
\(= \frac{\pi}{2} \int_{-1}^1 \frac{1}{1 + u^2} \, du \quad \text{Đặt } u = \tan v \quad -\frac{\pi}{2} < v < \frac{\pi}{2}\)
\(= \frac{\pi^2}{4}\)
page 98
Lời giải
Đặt \(x = \frac{\pi}{2} - t \quad \Rightarrow \quad dx = -dt\)
\( I = \int_0^{\frac{\pi}{2}} \frac{5 \cos x - 4 \sin x}{(\cos x + \sin x)^3} \, dx = \int_0^{\frac{\pi}{2}} \frac{5 \sin t - 4 \cos t}{(\sin t + \cos t)^3} \, dt\)
\( = \int_0^{\frac{\pi}{2}} \frac{5 \sin x - 4 \cos x}{(\sin x + \cos x)^3} \, dx = J\)
\(I + J = \int_0^{\frac{\pi}{2}} \frac{\cos x + \sin x}{(\cos x + \sin x)^3} \, dx = \int_0^{\frac{\pi}{2}} \frac{1}{(\cos x + \sin x)^2} \, dx\)
\( = \int_0^{\frac{\pi}{2}} \frac{1}{2 \cos^2 ( x - \frac{\pi}{4}) } \, dx = \frac{1}{2} tan \left( x - \frac{\pi}{4} \right) \Big|_0^{\frac{\pi}{2}}\)
\(= 1\)
Suy ra: \(I = \frac{1}{2}\)
page 99
Lời giải
\( I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{x}{4 - \sin^2 x} \, dx + \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos x}{4 - \sin^2 x} \, dx \)
\(= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos x}{4 - \sin^2 x} \, dx = \int_{-1}^1 \frac{1}{4 - t^2} \, dt = \int_{-1}^1 \frac{1}{(2 - t)(2 + t)} \, dt\)
\(= \frac{1}{4}\int_{-1}^1\left ( \frac{1}{2 - t} + \frac{1}{2 + t} \, dt \right) = \frac{1}{4} \left[\ln |2 + t| - \ln |2 - t| \right]\bigg|_{-1}^1 \)
\( = \frac{1}{4} \ln 3 + \frac{1}{4} \ln 3 = \frac{1}{2} \ln 3\)
Bấm: \( \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{x + \cos x}{4 - \sin^2 x} \, dx = 0.549306 = \frac{1}{2} \ln 3\)
Lời giải
\(\Rightarrow\) Vậy chọn đáp án \(\boxed{\text{B}} \)
page 100
(Đề minh họa 2017)
Lời giải
Bấm máy \( I = 2,097264 \) (dùng 2 máy)
Máy II (Trong khi đợi máy I, có lúc hơn 1 phút)
Thử B: Loại, Thử C: đúng chọn \( \boxed{\text{C}}\)
Lời giải
Bấm: \(\int_1^e x \ln x \, dx = 2,097264 \quad \) \( \begin{cases}\alpha e^2 + \beta = A \\ \ \alpha + \beta = ? \end{cases}\)
- Shift\( \to \text{Sto} \to A \)
- Mode \(\to 5 \to 1 \)
- \( e^2 \to = \to 1 \to = \to \text{Alpha} \to A \to = \)
- \( 1 \to = \to 1 \to = \to 2 \to \frac{1}{2} \to = \to\)
Vậy \( \alpha + \beta = \frac{1}{2}\)
* Để sửa lại: Khi đó: \( \alpha^2 + \beta^2\) bằng \(\ldots \) thì phải tính tích phân.
page 101