Đáp án:
\(\int_{-1}^1 f(1 + 2x) \, dx + \int_{-1}^1 f(1 - 2x) \, dx = \int_{-1}^1 \frac{x^2}{1 + x^2} \, dx\)
\(\Rightarrow \frac{1}{2} \int_{-1}^1 f(1 + 2x) \, d(1 + 2x) - \frac{1}{2} \int_{-1}^1 f(1 - 2x) \, d(1 - 2x) = \int_{-1}^1 \frac{x^2}{1 + x^2} \, dx\)
\(\Rightarrow \frac{1}{2} \int_{-1}^3 f(t) \, dt - \frac{1}{2} \int_{3}^{-1} f(t) \, dt = \int_{-1}^1 \frac{x^2}{1 + x^2} \, dx\)
\(\Rightarrow \int_{-1}^3 f(t) \, dt = \int_{-1}^1 \frac{x^2}{1 + x^2} \, dx = 0.4292036732 \, \rightarrow \boxed{A}.\)
page56
Đáp án:
\(x = 0 : f^3(2) - 2f^2(2) = 0 \Rightarrow f^2(2)(f(2) - 2) = 0\) \( \Leftrightarrow \begin{cases} f(2) = 0 \\ f(2) =2 \end{cases}.\)
Lấy đạo hàm hai vế:
\(-3f'(2 - x)f^2(2 - x) - 12f'(2 + 3x)f(2 + 3x) + 2xg(x) + x^2g'(x) + 36 = 0\)
\(x = 0 \Rightarrow -3f'(2)(f(2))^2 - 12f'(2)f(2) + 36 = 0\)
\(\Rightarrow \) (\( f(2)=0\) loại) \(f(2) =2 \)
\(\Rightarrow -12f'(2) - 24f'(2) + 36 = 0 \Rightarrow f'(2) = 1\)
\(\Rightarrow A = 3f(2) + 4f'(2) = 6 + 4 = 10\Rightarrow \boxed{D}\)
page57
Đáp án:
\( I = \int_{0}^{4} f'(x - 2) \, d(x-2) + \int_{0}^{2} f'(x + 2) \, d(x+2) \)
\( = \int_{-2}^{2} f(t) \, dt + \int_{2}^{4} f'(t) \, dt \)
\( = f(2) - f(-2) + f(4) - f(2) \)
\( = f(4) - f(-2) = 4 + 2 = 6 \Rightarrow \boxed{D}\)
page58
Đáp án:
\(\int \frac{f(\sqrt{x + 1})}{\sqrt{x+1}} = 2 \int f(\sqrt{x + 1}) \, d(\sqrt{x + 1}) = \frac{2(\sqrt{x + 1} + 3)}{(\sqrt{x + 1})^2 + 4}. \)
\( \Rightarrow \int f(x) \, dx = \frac{x + 3}{x^2 + 4} + C. \)
\( \int f(2x) \, dx = \frac{1}{2} \int f(x) \, d(2x) = \frac{1}{2} \left( \frac{2x + 3}{4x^2 + 4} \right) + C. \)
\( = \frac{2x + 3}{8(x^2 + 1)} + C \quad \Rightarrow \boxed{D}. \)
page59
Đáp án:
\( I = 2 \int_{1}^{2} \frac{1}{x} dx - \int_{1}^{2} \frac{1}{x^2} dx + \int_{1}^{2} \frac{x f'(x) - f(x)}{x^2} dx \)
\( = 2 \ln x \big|_{1}^{2} + \frac{1}{x} \big|_{1}^{2} + \int_{1}^{2} \left( \frac{f(x)}{x} \right)' dx \)
\( = 2 \ln 2 + \left( \frac{1}{2} - 1 \right) + \left( \frac{f(x)}{x} \right) \big|_{1}^{2} \)
\( = 2 \ln 2 - \frac{1}{2} + \left( \frac{4}{2} - 1 \right) = 2 \ln 2 + \frac{1}{2} \Rightarrow \boxed{C} \)
page60