Làm thêm:
page16
Đáp án:
\( f(1) - f(0) = 3 \implies \int_0^1 f'(x) dx = 3. \)
Tìm \( k \) để: \( \int_0^1 \left[ f'(x) - k \right]^2 dx = C. \)
\( \Leftrightarrow \int_0^1 \left( f'(x) \right)^2 dx - 2k \int_0^1 f'(x) dx + k^2 \int_0^1 dx = 0. \)
\( \Leftrightarrow 9 - 6k + k^2 = 0 \implies k = 3. \)
Suy ra: \( f'(x) = 3 \implies f(x) = 3x + C. \)
\( f(1) - f(0) = 3 \Leftrightarrow 3 - C + C = 3. \)
\( f(2) = 6 \implies C = 0 \)
\( \implies f(x) = 3x \implies (f(x))^4 = 81x^4\)
\( I = \int_0^1(f(x) x)^4 dx = \frac{81x^5}{5} \big|_0^1 = \frac{81}{5} \implies \boxed{C} \)
page17
(Đề tham khảo 2018 câu 50)
Đáp án:
Xét: \( \int_0^1 x^2 f(x) dx. \)
Đặt:\(
\begin{cases}
u = f(x) \\
dv = x^2 dx
\end{cases} \implies \begin{cases} du = f'(x) dx \\ v = \frac{x^3}{3} \end{cases}\)
\( \frac{1}{3} = \int_0^1 x^2 f(x) dx = \frac{x^3}{3} f(x) \big|_0^1 - \int_0^1 \frac{x^3}{3} f'(x) dx. \)
\( \implies \int_0^1 \frac{x^3}{3} f'(x) dx = -1. \)
Tìm \( k \) sao cho:
\( \int_0^1 \left[ f'(x) - kx^3 \right]^2 dx = 0 \Leftrightarrow \int_0^1 \left( f'(x) \right)^2 dx - 2k \int_0^1 x^3 f'(x) dx + k^2 \int_0^1 x^6 dx = 0. \)
\( \Leftrightarrow 7 + 2k + \frac{k^2}{7} = 0 \Leftrightarrow k^2 + 14k + 49 = 0 \Leftrightarrow k = -7. \)
Suy ra: \( f'(x) = kx^3 = -7x^3 \implies f(x) = -\frac{7x^4}{4} + C. \)
\( f(1) = 0 \implies C = \frac{7}{4} \)
\( f(x) = -\frac{7}{4}x^4 + \frac{7}{4} \implies \int_0^1 f(x) dx = \frac{7}{5} \implies \boxed{A} \)
page18
Đáp án:
Xét: \( \int_0^1 \left( f'(x) \right)^2 dx - 6 \int_0^1 x^2 f'(x) dx + \int_0^1 9x^4 dx. \)
\( = \frac{9}{5} - \frac{18}{5}+\frac{9x^5}{5}|_0^1 =0 \)
\( \implies \int_0^1 \left( f'(x) - 3x^2 \right)^2 dx = 0 \implies f'(x) = 3x^2 \implies f(x) = x^3 + C. \)
\( f(1) = 0 \implies C = \):
\( I = \int_0^1 x^3 dx = \frac{x^4}{4}|_0^1 = \frac{1}{4} \implies \boxed{B}\)
Giảng: Tìm \( k \) để:
\( \int_0^1 \left( f'(x) - kx^2 \right)^2 dx = 0 \Leftrightarrow \int_0^1 \left( f'(x) \right)^2 dx - 2k \int_0^1 x^2 f'(x) dx + k^2 \int_0^1 x^4 dx = 0. \)
\( \frac{9}{5} - 2k \frac{3}{5} + \frac{k^2}{5} = 0 \Leftrightarrow k^2 - 6k + 9 = 0 \Leftrightarrow k = 3. \)
page19
Đáp án:
\( \int_{0}^{1} \Big( f'(x) - 4x^3 \Big)^2 \, dx = 0 \implies f'(x) = 4x^3 ...... \)
page20