Bài tập: Tìm tất cả giá trị của m để hàm số \(y = \frac{(m - 1)\cos{x} - 2}{\cos{x} - m}\) nghịch biến trong \((0, \frac{\pi}{2})\)
A. \(-1 \leq m \leq 0\)
B. \(1 \leq m < 2\)
C. \(-1 < m \leq 0 \, \vee \, 1 \leq m < 2\)
D. \(m < -1 \, \vee \, m > 2\)
page 35
Bài tập: Tìm tất cả giá trị của m để hàm số \(y = \frac{2\sin{x} - 1}{\sin{x} - m}\) đồng biến trong \((0, \frac{\pi}{2})\)
A. \( m < -1\)
B. \(m \geq 1\)
C. \(m \leq 0\)
D. \(m > -1\)
page 36
Bài tập: Có bao nhiêu giá trị nguyên của m để hàm số \(y = \frac{\sin{x} - m}{m\sin{x} - 4}\) đồng biến trong \((\frac{\pi}{2}, \pi)\)?
A. 5
B. Vô số
C. 3
D. 7
page 37
Bài tập: Tập hợp tất cả giá trị của m để hàm số \(y = \sin^4{x} - 2m\sin^2{x} + 3\) nghịch biến trong khoảng \((0, \frac{\pi}{6})\) là
A. \((\frac{1}{4}, +\infty)\)
B. \([\frac{1}{4}, +\infty)\)
C. \([0, +\infty)\)
D. \((-\infty, 0]\)
page 38
Bài tập: Cho hàm số \(y = f(x)\) xác định trong \( (a, b)\). Trong các mệnh đề sau, có bao nhiêu mệnh đề đúng:
I. Nếu hàm \(f\) đồng biến trong \((a, b)\) thì\( f'(x) > 0, \forall x \in (a, b)\)
II. Nếu hàm \(f\) đồng biến trong \( (a, b)\) thì \(f'(x) \geq 0, \forall x \in (a, b)\)
III. Nếu \(f'(x) \geq 0, \forall x \in (a, b)\) thì hàm \(f\) đồng biến trong \((a, b)\)
IV. Nếu \(f'(x) >0, \forall x \in (a, b)\) thì hàm \(f\) đồng biến trong \((a, b)\)
\( \text{A. 1} \quad \text{ B. 2} \)
\( \text{C. 3} \quad \text{ D. 4} \)
page 39