Lời giải
\(\Rightarrow \begin{cases}
2x + 1 \geq 0 \\
f'(x^2 + x) \geq 0
\end{cases}
\text{ hoặc }
\begin{cases}
2x + 1 \leq 0 \\
f'(x^2 + x) \leq 0
\end{cases}\)
\( \Leftrightarrow \) \(\begin{cases}
x \geq -\frac{1}{2} \\
-1 \leq x^2 + x \leq 1 \quad \lor \quad x^2 + x \geq 4
\end{cases} \)
hoặc \( \begin{cases}
x \leq -\frac{1}{2} \\
x^2 + x \leq -1 \quad \lor \quad 1 \leq x^2 + x \leq 4
\end{cases}\)
\( \Leftrightarrow \begin{cases}
x \geq -\frac{1}{2} \\
\frac{-1 - \sqrt{5}}{2} \leq x \leq \frac{-1 + \sqrt{5}}{2} \quad \lor \quad x \leq \frac{-1 -\sqrt{17}}{2} \quad \lor \quad x \geq \frac{-1 + \sqrt{17}}{2}
\end{cases} \)
hoặc
\( \begin{cases}
x \leq -\frac{1}{2} \\
\frac{-1 -\sqrt{17}}{2} \leq x \leq \frac{-1 - \sqrt{5}}{2} \quad \lor \quad \frac{-1 + \sqrt{5}}{2} \leq x \leq \frac{-1 + \sqrt{17}}{2}
\end{cases} \)
\( \Leftrightarrow \) \( \left[ \begin{array}{}
-\frac{1}{2} \leq x \leq \frac{-1 + \sqrt{5}}{2} \quad \lor \quad x \geq \frac{-1 + \sqrt{17}}{2} \\
\frac{-1 - \sqrt{17}}{2} \leq x \leq \frac{-1 - \sqrt{5}}{2}
\end{array} \right. \)
Hàm \(f(x)\) có 5 cực trị.