Lời giải:
\( y' = -3x^2 - 6mx = -3x(x + 2m) = 0 \) \(\Leftrightarrow \left[ \begin{array}{} x = 0 \\ x = -2m \end{array} \right. \)
Vì \( f(0) = 2 \), nên \( m \) thỏa yêu cầu \( \min_{[0, 3]} y = 2 \)
\(\left[\begin{array}{}\begin{cases} 0 < -2m \\ -2m \geq 3 \end{cases} \\\begin{cases} 0 \leq -2m \\ -2m < 3 \\ f(3) \geq 2 \end{cases}\\\begin{cases} -2m \leq 0 \\ f(3) = 2 \end{cases}\end{array}\right. \)
\(\Leftrightarrow \left[\begin{array}{}m \leq -\frac{3}{2} \\\begin{cases} -\frac{3}{2} < m<0 \\ -27m-25\geq 2 \end{cases}\\\begin{cases} m \geq 0 \\ -27m-25=2 \end{cases}\end{array}\right. \)
\(\Leftrightarrow \left[\begin{array}{}m \leq -\frac{3}{2} \\ -\frac{3}{2} < m \leq -1 \end{array}\right. \)
\( \Leftrightarrow m \leq -1\)
Vậy chọn \(\boxed{A}\).