Lời giải:
\( y' = \frac{m^2 +2}{(x + m)^2} > 0, \forall x \neq -m \)
\( \text{Min } y = -2 \text{ khi } x \in [-1, 3] \)
\(\Leftrightarrow \left\{ \begin{array}{l} -m \notin [-1, 3] \\ f(-1) = -2 \end{array} \right. \quad \) \(\Leftrightarrow \quad \left\{ \begin{array}{l} -m < -1 \text{ hoặc } m > 3 \\ \frac{-m - 2}{-1 + m} = -2 \end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l} m > 1 \text{ hoặc } m < -3 \\ -m - 2 = -2m + 2 \end{array} \right. \quad \) \( \Leftrightarrow \quad m = 4\)
Vậy chọn \(\boxed{D}\).