Lời giải:
\( d(M, \Delta_1) = 2d(M, \Delta_2) \):
\( \Leftrightarrow |x_0 - 3| = 2 \left|\frac{3x_0 - 1}{x_0 - 3} - 3\right| \)
\( \Leftrightarrow |x_0 - 3| = \frac{16}{|x_0 - 3|} \quad \Leftrightarrow \quad (x_0 - 3)^2 = 16 \)
\( \Leftrightarrow \left[ \begin{aligned} & x_0 - 3 = 4 \\ & x_0 - 3 = -4 \end{aligned} \right. \quad\) \( \Leftrightarrow \quad \left[ \begin{aligned} & x_0 = 7 \\ & x_0 = -1 \end{aligned} \right.\)
Vậy \( M(-1, 1) \) hoặc \( M(7, 5) \).